User seoochre | Published | Dofollow Social Bookmarking Sites 2016
Facing issue in account approval? email us at info@ipt.pw

Click to Ckeck Our - FREE SEO TOOLS

Ads Listing ALL

Avatar
Seoochre

0 Following 0 Followers
1
In the last few decades, hot-melt extrusion (HME) has emerged as a rapidly growing technology in the pharmaceutical industry, due to its various advantages over other fabrication routes for drug delivery systems. After the introduction of the ‘quality by design’ (QbD) approach by the Food and Drug Administration (FDA), many research studies have focused on implementing process analytical technology (PAT), including near-infrared (NIR), Raman, and UV–Vis, coupled with various machine learning algorithms, to monitor and control the HME process in real time. This review gives a comprehensive ove
1
In August 2021, ransomware operators targeted the health department of the Italian region of Lazio and disabled its COVID-19 vaccination booking system, disrupting the scheduling of new vaccination appointments for days.

Since it contains the city of Rome and is one of Italy’s most densely populated areas, Lazio was an attractive target because of the strong desire among its people to get vaccinated and gain its Green Pass vaccine passport. Hackers likely believed that this would pressure the authorities to pay up the ransom to unlock the systems they had disabled through a cyberattack.

1
The pharmaceutical manufacturing process and critical quality attributes (CQAs) are not only needed to control tightly but also required to be protected from any vulnerability in real-time. Currently, pharmaceutical manufacturing companies are facing enormous challenges to protect their plant from possible cyberphysical security (CPS) threats. Cyber-physical security is essential not only to protect the plant from any mechanical damages but also to assure the product quality and thereby, patient safety. The quality of the pharmaceutical products can be improved significantly by implementing a
1
However, these efforts are haunted by a shortage of resources, restrictions on importing API, social distancing at facilities, disturbed supply chains, and tremendous pressure to quickly manufacture and distribute products. Despite these arduous circumstances, it remains critical for pharma companies to maintain quality and compliance and follow regulatory guidelines. Doing so requires pertinent measures to ensure adherence to Current Good Manufacturing Practice (CGMP) guidelines, and data integrity to meet the requirements of regulators including the U.S. Food and Drug Administration (FDA),
1
Pharma 4.0, an application of Industry 4.0 concepts in the pharmaceutical industry, aims to enhance manufacturing efficiency, product quality, and consistency. It faces challenges in areas like artificial intelligence, material traceability, optimization, process control, cyber-physical security, and data management due to the complexity involved. However, by incorporating artificial intelligence and advanced model predictive control with robust cyber-physical security measures, predictive capabilities and product quality can be significantly improved. This work focuses on implementing seven
1
The biopharmaceutical industry operates under strict regulations, and effective supply chain management is crucial for patient safety and timely access to treatments. The biopharmaceutical supply chain is responsible for ensuring efficient and secure delivery of drugs and vaccines while maintaining product quality. Challenges such as compliance, risk management, and technology adoption have emerged in recent years. Cold chain management, monitoring technologies, and new regulations like DSCSA and FMD have impacted the industry. Adhering to trends and regulations, including blockchain and arti
1
The principles of Humane Experimental Technique has resulted in 3Rs concept: Replacement, Reduction and Refinement of animal tests. The number of animals used for both preclinical and quality control is thought to be reduced to zero if vaccines are better characterised while allowing testings by a set of in vitro methods rather than in vivo scenarios. The in vitro methods to detect safety related to potency of vaccines can employ alternative platforms like that of human derived cell/tissue based surrogate systems - The humane technique facilitating increased control of critical stepsin produc
1
In the treatment of pediatric diseases, mass-produced dosage forms are often not suitable for children. Commercially available medicines are commonly manipulated and mixed with food by caregivers at home, or extemporaneous medications are routinely compounded in the hospital pharmacies to treat hospitalized children. Despite considerable efforts by regulatory agencies, the pediatric population is still exposed to questionable and potentially harmful practices. When designing medicines for children, the ability to fine-tune the dosage while ensuring the safety of the ingredients is of paramoun
1
The life sciences sector has become increasingly popular given the ongoing global health crisis, putting the spotlight firmly on the need for greater medical care and infrastructure. Implementation of tech solutions to improve existing health infrastructure has also become a trend and one likely to continue as current health and economic challenges due to COVID-19 will see digital health companies playing a more important role in corporate and national growthThe life sciences sector continues to see a multitude of deals involving complex deal structures, from special purpose acquisition compa
1
It’s been nearly two years since the outbreak of COVID-19 began and we’re still in the midst of enormous disruptions to the world’s economies, businesses, education, and people’s lives. The pharmaceutical industry has been particularly disrupted. Previously, pharma companies suffered from a bad reputation. But following the emergence of the pandemic, they were thrown into the spotlight, suddenly having an important voice on the health of the world. Leaders in the pharma space were on the front cover of every newspaper and magazine not because of scandal, but because of the lifesaving treatmen
1
The Global Biosimilars Market is estimated to reach US$240 billion by 2030, with the Indian market at US$35 billion. The considerable increase in reference products, with the USFDA adding 90 molecules and India approving 70 biosimilars, promises to usher in further growth. The Biopharma industry seems keen on investing in the biosimilar market with a focus on improving healthcare and health care costs for diseases of interest like COVID-19, cancer, immunologic diseases, and diabetes. This is evident in the projected growth of the oncology biosimilar market at 17 per cent CAGR, and the growing
1
Globally, the outsourcing of services for drug development and commercialisation is increasing. Regulatory services are often included in this, and regulatory activities are increasingly the subject of specific, dedicated FSP (functional services partnership) projects. This article overviews a number of the more common models, including cost models, that can be deployed for the outsourcing of regulatory services. We assessed the appropriate criteria and advantages of these models, illustrating with examples from our experience. Interestingly, over the life of a single project, different model
1
The drug business has various strange qualities that make it very different from individuals' thought process of as industry. Its additionally an industry packed with logical inconsistencies; for instance, notwithstanding the undisputed reality that for more than a century the business has made a major contribution to human prosperity and the decrease of chronic sickness and suffering, it is still routinely recognized bygeneral society in assessment reviews as one of the most un-confided in ventures, frequently being contrasted horribly with the atomic business. It is without a doubt perhaps
1
More than one billion people are impacted by chronic and acute lung diseases globally Infact, non-communicable diseases, such as chronic respiratory diseases are among the biggest reasons for fatality (WHO). Despite the growing health and wellness centricity across countries, respiratory conditions have not received the attention they need. If at all they do then it’s more for infectious conditions like Tuberculosis. But when wellness is looked at holistically, healthy lungs and lung health is paramount for overall health and wellbeing. According to WHO, respiratory illnesses lead to over 10p
1
Gene therapy, in general, encompasses a wide range of treatments that all use genetic material to modify cells to aid in healing. To understand the long-term benefits, it is necessary to be aware of the obstacles to therapeutic intervention and to have a developed approach to overcome them. In addition to, for example, failures in targeting metastatic cells, obstacles also include ethical issues, since approaches in gene therapy result in integration into the individual’s genome and thus the possibility of transmitting genetic changes to the patient’s offspring. As with any new type of therap
1
This decade rang in the digital clinical trial initiative, with the first ‘virtual’ trial being approved by the FDA in 2012. This was Pfizer’s Research On Electronic Monitoring of Overactive Bladder Treatment Experience (REMOTE) trial. It used e-consenting, web and smartphone-based recruitment, the study drug was delivered to patient’s and patient data and patient safety were monitored remotely by physicians throughout the trial. The objective was to enrol 600 patients from about 10 states across the USA. However, the trial failed, primarily as recruitment targets were not met, owing to the f
1
Data can be used to analyze genomes, prescribe pharmaceuticals in the pharmaceutical and biotechnology industries, and a variety of other applications. Now that data has become "BIG DATA," analyzing it has become a whole new field of "Analytics and Data Science." The cost of genome structure analysis has decreased from ten million dollars in 2007 to one thousand dollars thanks to analytics. On the basis of big data analysis, a cancer treatment was prescribed. It can be used in a variety of industries and enterprises. There are numerous firms that are solely dependent on analytics, as well as
1
While the life sciences sector has incrementally adopted digital technologies over the years, the rate of digital transformation over the next five years looks to be unprecedented. Collaborations and acquisitions in the pursuit of digital transformation have accelerated significantly. In 2018, US$9.5 billion was invested in the digital health sector over 698 deals. From the FDA approval of Otsuka’s sensor embedded drug Abilify Mycite and the approval of Pear Therapeutics’ app for the treatment of opioid abuse, through to Takeda’s partnership with Emulate Inc for the use of organs on chips for
1
Pharmacovigilance (PV) is increasingly taking its toll on life science organisations. According to EY research1, large pharmaceutical companies contend with an average of 700,000 adverse event (AE) cases each year, a number that IDC2 has found to be rapidly increasing by 30 to 50 per cent annually. The pandemic has exacerbated the situation, with the fast tracking of COVID-19 vaccines increasing AE caseloads to more than one million a year for some industry players.Companies are under pressure to manage this increased case load effectively while still maintaining their current cost base. Data
1
In the ever-evolving realm of pharmaceutical research and development (R&D), the powerful wave of digitalization is restructuring conventional methodologies and paving the way for a novel era of ingenuity and streamlined processes. Termed digital transformation, this profound shift entails the strategic infusion of cutting-edge information technologies into established drug discovery and development procedures. Leading this revolution are technologies like big data analytics, artificial intelligence (AI), blockchain, and telemedicine. Digital transformation signifies a potential revolution in